

Learning in the Presence of Strategy

Dr. Ganesh Ghalme

Indian Institute of Technology Hyderabad

December 16, 2025

Historical Loans

Loan decision

Classical ML

Medical History →

Learning in the Presence of Strategy

- Agents with different goals, information and strategies interact with AI/ML algorithms

Learning in the Presence of Strategy

- Agents with different goals, information and strategies interact with AI/ML algorithms
- Agents are rational; take action that is best given their information
- Misalignment in objectives (also, sometimes information) leads to inefficiency

Strategic Learning

Classical vs Strategic Learning

- Let f be a binary classifier

Classical vs Strategic Learning

- Let f be a binary classifier
- **Deployment time:** $(x, y) \sim D$ is seen as is by f in classical setting.
- **Strategic setting:** $(x, y) \rightarrow (x', y')$.
 - ▶ The change (in feature value) is made by strategic agents (more on it later) in response to deployed classifier f

Classical vs Strategic Learning

- Let f be a binary classifier
- **Deployment time:** $(x, y) \sim D$ is seen as is by f in classical setting.
- **Strategic setting:** $(x, y) \rightarrow (x', y')$.
 - ▶ The change (in feature value) is made by strategic agents (more on it later) in response to deployed classifier f
 - ▶ If $y' = y$ then it is called gaming ^a

Classical vs Strategic Learning

- Let f be a binary classifier
- **Deployment time:** $(x, y) \sim D$ is seen as is by f in classical setting.
- **Strategic setting:** $(x, y) \rightarrow (x', y')$.
 - ▶ The change (in feature value) is made by strategic agents (more on it later) in response to deployed classifier f
 - ▶ If $y' = y$ then it is called gaming ^a
 - ▶ If also $y' \neq y$; the rule f is called performative prediction

^aStrategic Classification, Hardt, Maggido, Papadimitriou, Wooters. ITCS 2016

Strategic Modification of data at deployment time

- **Agents/Users** want favourable outcome; 1 if classified positively and 0 otherwise.

Strategic Modification of data at deployment time

- **Agents/Users** want favourable outcome; 1 if classified positively and 0 otherwise.
- **Classifier** designed to predict true label accurately;
- **Users** optimal response to f

$$\Delta_f(x) \in \arg \min_{x' \in \mathcal{X}} \left(\underbrace{f(x')}_{\text{classifier}} - \underbrace{c(x, x')}_{\text{cost}} \right)$$

Strategic Modification of data at deployment time

- **Agents/Users** want favourable outcome; 1 if classified positively and 0 otherwise.
- **Classifier** designed to predict true label accurately;
- **Users** optimal response to f

$$\Delta_f(x) \in \arg \min_{x' \in \mathcal{X}} \left(\underbrace{f(x')}_{\text{classifier}} - \underbrace{c(x, x')}_{\text{cost}} \right)$$

- $c(x, x')$: cost of reporting x as x' .

Strategic Modification of data at deployment time

- **Agents/Users** want favourable outcome; 1 if classified positively and 0 otherwise.
- **Classifier** designed to predict true label accurately;
- **Users** optimal response to f

$$\Delta_f(x) \in \arg \min_{x' \in \mathcal{X}} \left(\underbrace{f(x')}_{\text{classifier}} - \underbrace{c(x, x')}_{\text{cost}} \right)$$

- $c(x, x')$: cost of reporting x as x' .
- cost is non-negative, truthful reports incur zero cost

Strategic Modification of data at deployment time

- **Agents/Users** want favourable outcome; 1 if classified positively and 0 otherwise.
- **Classifier** designed to predict true label accurately;
- **Users** optimal response to f

$$\Delta_f(x) \in \arg \min_{x' \in \mathcal{X}} \left(\underbrace{f(x')}_{\text{classifier}} - \underbrace{c(x, x')}_{\text{cost}} \right)$$

- $c(x, x')$: cost of reporting x as x' .
- cost is non-negative, truthful reports incur zero cost
- **System's** payoff: $\mathbb{E}_{(x,y) \sim \mathcal{D}}[f(\Delta_f(x)) = y]$.
Throughout this talk we will consider **strategic error**.

$$f_s^* \in \arg \min_{f \in \mathcal{F}} \mathbb{E}_{(x,y) \sim \mathcal{D}}[f(\Delta_f(x)) \neq y]$$

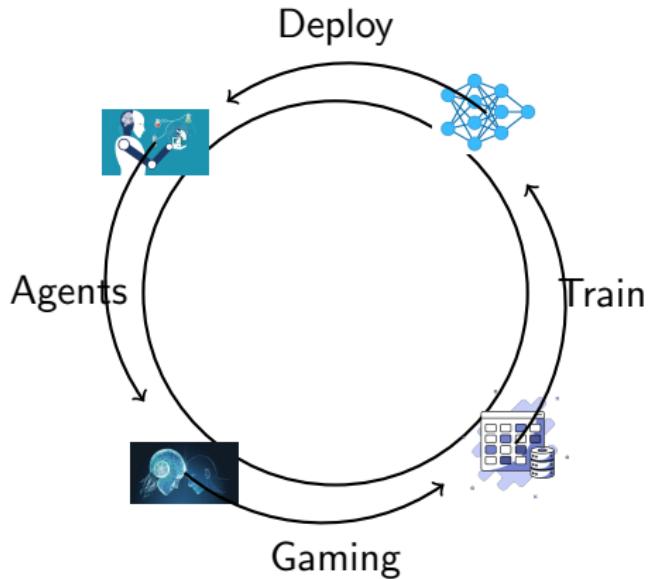
Systems goal: Find f^* that adjusts to distribution shift in test data.

Applications

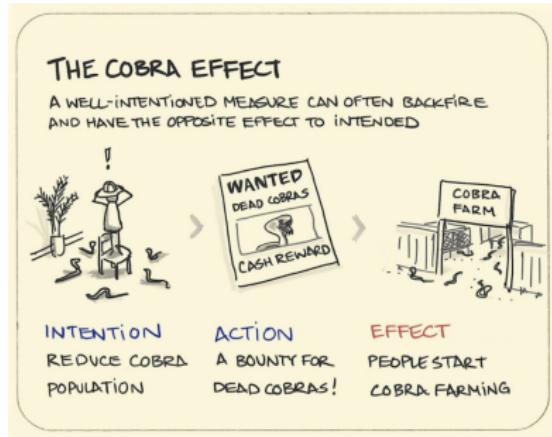
- ① Health risk predictions
- ② Bank loan approvals
- ③ Corporate
hiring/promotions ...

Applications

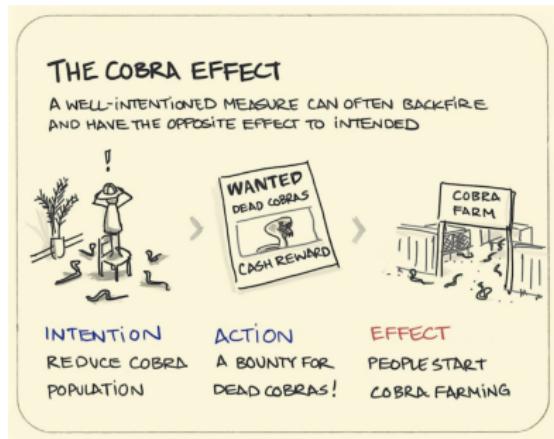
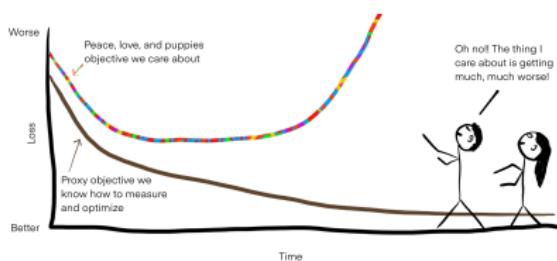
- ① Health risk predictions
- ② Bank loan approvals
- ③ Corporate hiring/promotions ...



Gaming



Gaming

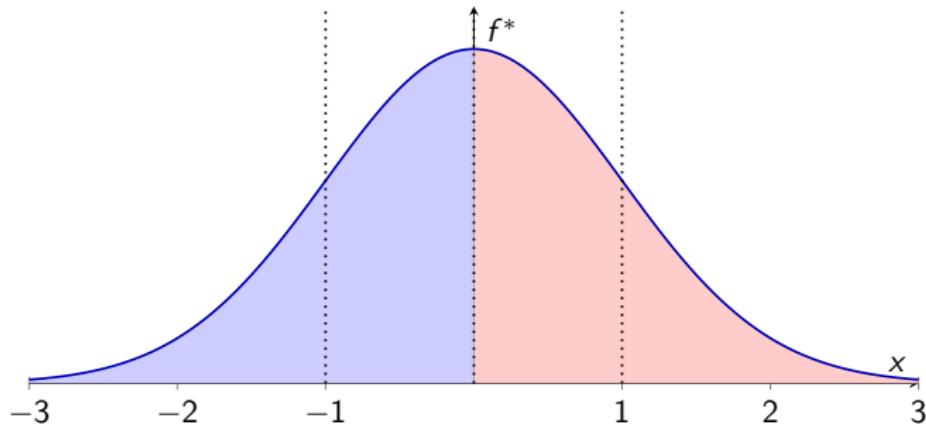


Warmup

- Classical vs strategic classification: $\mathcal{D}_{train} \neq \mathcal{D}_{test}$ in strategic classification

Warmup

- Classical vs strategic classification: $\mathcal{D}_{train} \neq \mathcal{D}_{test}$ in strategic classification
- \mathcal{D}_{test} is obtained from implemented classifier f and \mathcal{D}_{train}



Strategic Classification

- **Game theoretic interpretation:** Two players, **System** and **User(s)** play following Stackelberg game

Strategic Classification

- **Game theoretic interpretation:** Two players, **System** and **User(s)** play following Stackelberg game
 - ▶ **System** learns a classifier f from training data \mathcal{D}_{train}

Strategic Classification

- **Game theoretic interpretation:** Two players, **System** and **User(s)** play following Stackelberg game
 - ▶ **System** learns a classifier f from training data \mathcal{D}_{train}
 - ▶ **System** declares f publicly

Strategic Classification

- **Game theoretic interpretation:** Two players, **System** and **User(s)** play following Stackelberg game
 - ▶ **System** learns a classifier f from training data \mathcal{D}_{train}
 - ▶ **System** declares f publicly
 - ▶ **User**, on observing f , misreport (at cost) her features to obtain the desired outcome from f

Goal: To minimize risk under strategic data distribution shift (strategic error).

Learning Objective

Objective Function

$$\min_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^n \mathbb{1}[f(\Delta_f(x_i)) \neq y_i]$$

$$\text{with } \Delta_f(x) = \arg \max_{x'} f(x') - c(x, x')$$

- cost function important ($\Delta_f(x)$ unique?)
- Strategic Agents: Move to the point y on the boundary of the classifier at cost $c(x, y)$ only if $c(x, y) \leq 2$.
- Nested min-max problem

Examples

- $c(x, y) = \|y - x\|_2$, \mathcal{F} linear classifiers; $f(x) = w^T x$. Then

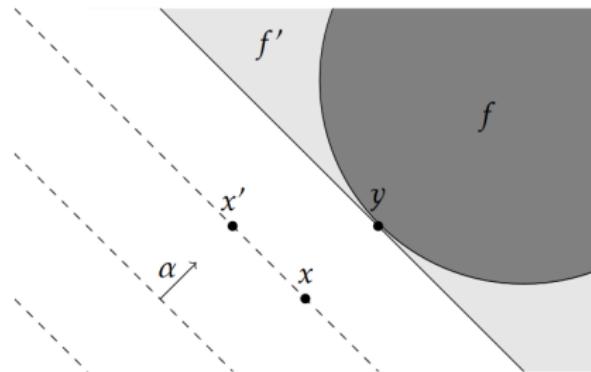
$$\Delta_w(x) = \begin{cases} x & \text{if } w^T x \geq 0 \text{ or } c(x; w) > 2. \\ \text{proj}(x; w) & \text{otherwise} \end{cases} \quad (1)$$

Examples

- $c(x, y) = \|y - x\|_2$, \mathcal{F} linear classifiers; $f(x) = w^T x$. Then

$$\Delta_w(x) = \begin{cases} x & \text{if } w^T x \geq 0 \text{ or } c(x; w) > 2. \\ \text{proj}(x; w) & \text{otherwise} \end{cases} \quad (1)$$

- (Separable) $c(x, y) = \max(0, c_2(y) - c_1(x))$ with $c_2(X) \subseteq c_1(X)$ e.g., $\langle \alpha, y - x \rangle_+$.

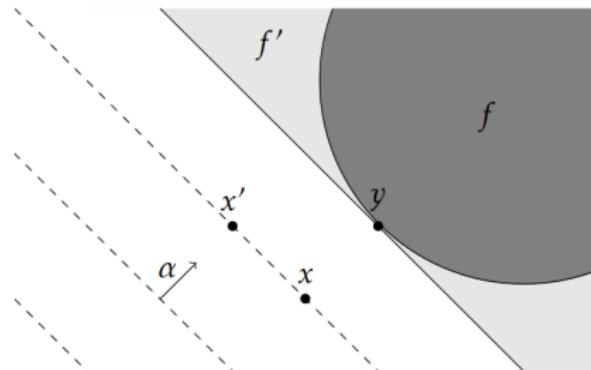


Examples

- $c(x, y) = \|y - x\|_2$, \mathcal{F} linear classifiers; $f(x) = w^T x$. Then

$$\Delta_w(x) = \begin{cases} x & \text{if } w^T x \geq 0 \text{ or } c(x; w) > 2. \\ \text{proj}(x; w) & \text{otherwise} \end{cases} \quad (1)$$

- (Separable) $c(x, y) = \max(0, c_2(y) - c_1(x))$ with $c_2(X) \subseteq c_1(X)$ e.g., $\langle \alpha, y - x \rangle_+$.



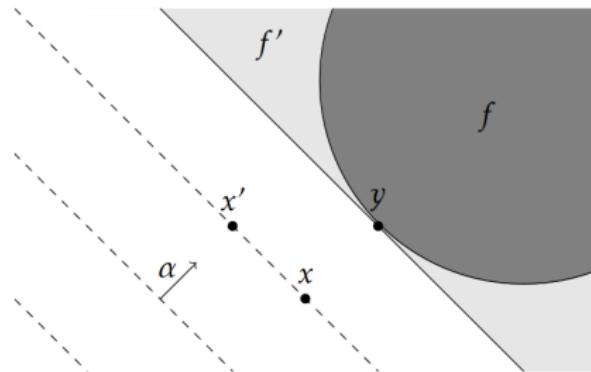
- (Decomposable) $c(x, y) = \sum_{i=1}^d \alpha_i |g_i(y_i) - g_i(x_i)|_+$

Examples

- $c(x, y) = \|y - x\|_2$, \mathcal{F} linear classifiers; $f(x) = w^T x$. Then

$$\Delta_w(x) = \begin{cases} x & \text{if } w^T x \geq 0 \text{ or } c(x; w) > 2. \\ \text{proj}(x; w) & \text{otherwise} \end{cases} \quad (1)$$

- (Separable) $c(x, y) = \max(0, c_2(y) - c_1(x))$ with $c_2(X) \subseteq c_1(X)$ e.g., $\langle \alpha, y - x \rangle_+$.



- (Decomposable) $c(x, y) = \sum_{i=1}^d \alpha_i |g_i(y_i) - g_i(x_i)|_+$ **more on it later**

Learnability Issues ¹

- Induced class $\mathcal{F}_\Delta = \{f(\Delta_f(x)) : f \in \mathcal{F}\}$.
- $SVC(\mathcal{F}) := VC(\mathcal{F}_\Delta)$.
- Cost is important
 - ▶ instance-invariant cost (cost of altering x is the same for all x);
 $SVC(\mathcal{F}) \approx VC(\mathcal{F})$ for linear f
 - ▶ instance-wise cost: SVC is ∞ even for linear classifiers.

¹Sundaram et al. PAC-learning for Strategic Classification, JMLR 2023

Learning Results: Strategic ERM

Definition (Strategy Robust Learning)

An algorithm \mathcal{A} is a strategy-robust learning algorithm for a class of cost functions \mathcal{C} if for all distributions \mathcal{D} , for all class probability functions η , all $c \in \mathcal{C}$ and for all ε and δ , given a description of c and access to labeled examples of the form $(x, \eta(x))$, where $x \sim \mathcal{D}$, \mathcal{A} produces a classifier $f : \mathcal{X} \rightarrow \{-1, 1\}$ so that, with probability at least $1 - \delta$ over the samples,

$$\Pr_{x \sim \mathcal{D}}(\eta(x) = f(\Delta_f(x))) > \text{OPT}(\mathcal{D}, c) - \varepsilon$$

Theorem

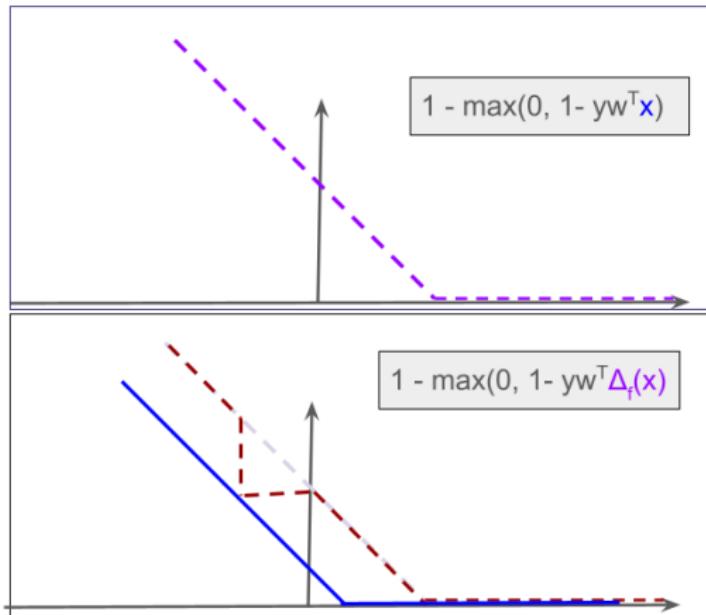
Let \mathcal{H} be a concept class, \mathcal{D} be a distribution and c be a separable cost function. Further, let m denote the number of samples and suppose

$$\mathcal{R}_m(\mathcal{H}) + 2\sqrt{\frac{\log(m+1)}{m}} + \sqrt{\frac{\log(2/\delta)}{8m}} \leq \frac{\varepsilon}{8}. \quad (2)$$

Then SERM outputs f such that w.p. atleast $1 - \delta$,
 $\mathbb{P}_{x \in \mathcal{D}}(\eta(x) = f(\Delta(x))) \geq \text{OPT}(\mathcal{D}, c) - \varepsilon$.

More on optimization Problem

- Why can't we use surrogate loss functions (such as hinge loss, log loss)



Variation 1: SC in the Dark ²

²Ghalme et al. Strategic Classification in the Dark, ICML 2021.

SC in the Dark

- ① Agent(s) may not have complete access to f ;

SC in the Dark

- ① Agent(s) may not have complete access to f ;
- ② Agents may have access to decisions by f ; Example: OpenShufa

SC in the Dark

- ① Agent(s) may not have complete access to f ;
- ② Agents may have access to decisions by f ; Example: OpenShufa

Definition (Strategic error in the dark)

$$\text{ERR}(f, \hat{f}) = \mathbb{P}_{x \sim \mathcal{D}}(y \neq f(\Delta_{\hat{f}}(x))) \quad (3)$$

SC in the Dark

- ① Agent(s) may not have complete access to f ;
- ② Agents may have access to decisions by f ; Example: OpenShufa

Definition (Strategic error in the dark)

$$\text{ERR}(f, \hat{f}) = \mathbb{P}_{x \sim \mathcal{D}}(y \neq f(\Delta_{\hat{f}}(x))) \quad (3)$$

Who is in the dark?

SC in the Dark

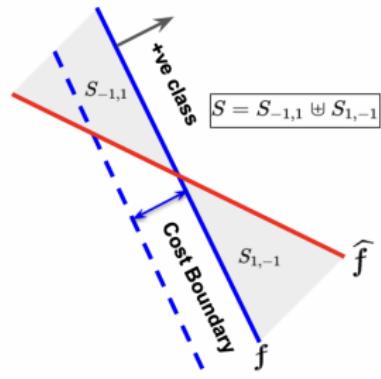
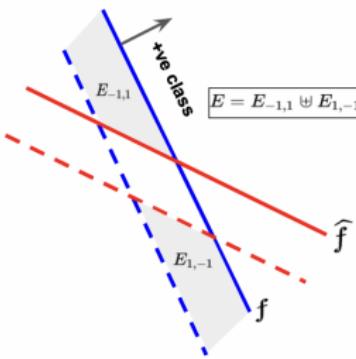
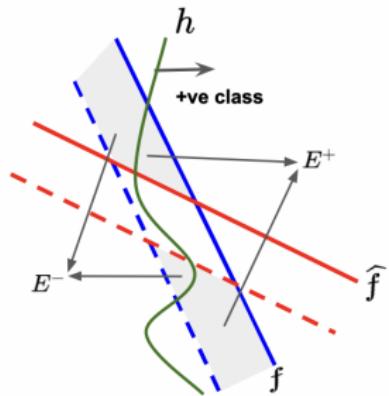
- ① Agent(s) may not have complete access to f ;
- ② Agents may have access to decisions by f ; Example: OpenShufa

Definition (Strategic error in the dark)

$$\text{ERR}(f, \hat{f}) = \mathbb{P}_{x \sim \mathcal{D}}(y \neq f(\Delta_{\hat{f}}(x))) \quad (3)$$

Who is in the dark? By making f public, System can anticipate agents' response better (and construct robust f). By keeping f private, System is also in the dark as partially informed users may lead to unpredictable response.

Price of Opacity



Definition (Price of Opacity (POP))

$$POP(f, f') := \text{ERR}(f, f') - \text{ERR}(f, f).$$

Here f is the System's classifier and f' is the classifier Agents' classifier (Agent responds to f').

Main Results

Definition (Price of Opacity (POP))

$$POP(f, f') := \text{ERR}(f, f') - \text{ERR}(f, f).$$

Here f is the System's classifier and f' is the classifier Agents' classifier (Agent responds to f').

Theorem (POP characterization)

If $\mathbb{P}_{x \sim \mathcal{D}}(x \in E) > 2\text{ERR}(f^*, f^*) + 2\varepsilon$, then $POP > 0$.

POP in Prosper.com loans data (safety=0.02)

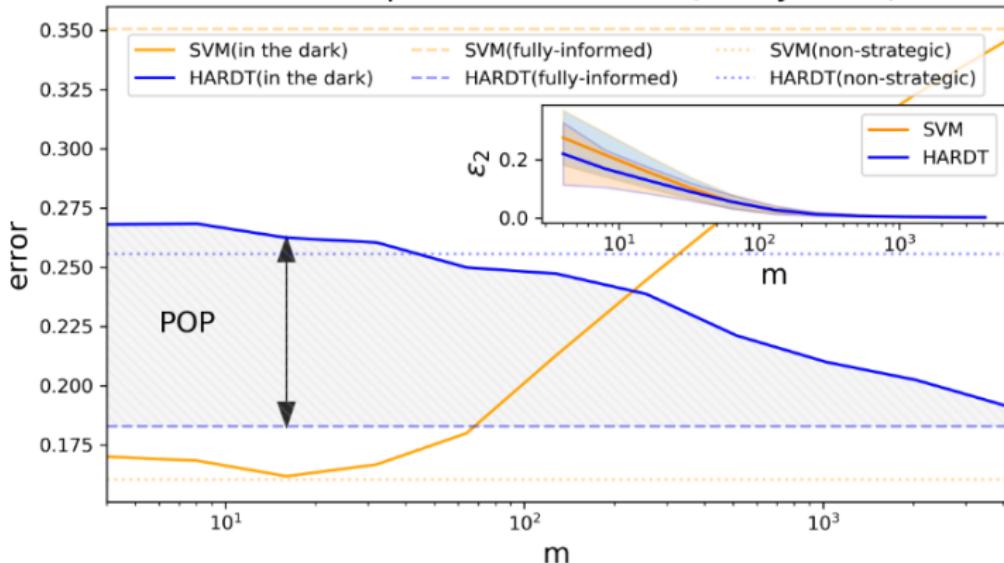


Figure: Price of Opacity is positive and decreases with the training samples m used to construct \hat{f} .

Performative Prediction ³

³Perdomo et al. Performative Prediction. ICML 2020

Variation 2: Performative Prediction

- SC assumption: Labels are immutable
- Performative Prediction: The (joint) distribution \mathcal{D} changes to $D(\theta)$ where θ represents the parameters of the classification rule.
- Predictive Optimal policy $PO = \arg \min_{f \in \mathcal{F}} \mathbb{E}_{Z \sim \mathcal{D}(\theta)} \ell(Z; \theta)$

Performative Prediction

- The deployed classifier has performative effect on qualification (improves with the cost/effort spent on obtaining positive outcome).
- Let classifier parameters be θ then, $\mathcal{D}_{deploy} = \mathcal{D}(\theta)$.

Performative Prediction

- The deployed classifier has performative effect on qualification (improves with the cost/effort spent on obtaining positive outcome).
- Let classifier parameters be θ then, $\mathcal{D}_{deploy} = \mathcal{D}(\theta)$.

Definition (Performative Risk)

$$PR(\theta) = \mathbb{E}_{Z \sim \mathcal{D}(\theta)} \ell(Z; \theta)$$

Performative Prediction

- The deployed classifier has performative effect on qualification (improves with the cost/effort spent on obtaining positive outcome).
- Let classifier parameters be θ then, $\mathcal{D}_{deploy} = \mathcal{D}(\theta)$.

Definition (Performative Risk)

$$PR(\theta) = \mathbb{E}_{Z \sim \mathcal{D}(\theta)} \ell(Z; \theta)$$

Definition (Iterative Version)

$$\theta_{t+1} = \arg \min_{\theta} \mathbb{E}_{Z \sim \mathcal{D}(\theta_t)} \ell(Z; \theta)$$

Performative Prediction

- The deployed classifier has performative effect on qualification (improves with the cost/effort spent on obtaining positive outcome).
- Let classifier parameters be θ then, $\mathcal{D}_{deploy} = \mathcal{D}(\theta)$.

Definition (Performative Risk)

$$PR(\theta) = \mathbb{E}_{Z \sim \mathcal{D}(\theta)} \ell(Z; \theta)$$

Definition (Iterative Version)

$$\theta_{t+1} = \arg \min_{\theta} \mathbb{E}_{Z \sim \mathcal{D}(\theta_t)} \ell(Z; \theta)$$

Definition (Performative Stability)

A model $f_{\theta_{ps}}$ is called performatively stable if

$$\theta_{PS} = \arg \min_{\theta} \mathbb{E}_{Z \sim \mathcal{D}(\theta_{PS})} \ell(z; \theta)) \quad (4)$$

Results: Performative Predictions

Theorem (Informal)

If the loss is smooth, strongly convex, and the mapping $\mathcal{D}(.)$ is sufficiently Lipschitz, then repeated risk minimization converges to performative stability at a linear rate.

Results: Performative Predictions

Theorem (Informal)

If the loss is smooth, strongly convex, and the mapping $\mathcal{D}(\cdot)$ is sufficiently Lipschitz, then repeated risk minimization converges to performative stability at a linear rate.

Theorem (Informal)

If the loss is Lipschitz and strongly convex, and the map $\mathcal{D}(\cdot)$ is Lipschitz, all stable points and performative optima lie in a small neighbourhood around each other.

Improvement Aware Strategic Classification

Improvement Aware SC

- Assume that η is component-wise increasing in x ⁴ and the cost function is decomposable.

⁴Feature value indicates qualification; higher the better.

Improvement Aware SC

- Assume that η is component-wise increasing in x ⁴ and the cost function is decomposable.
- Define
 - ▶ $\text{ERR}_s(f) := \mathbb{E}_{(x,y) \sim \mathcal{D}} [\mathbb{1}(f(\Delta_f(x)) \neq y)]$

⁴Feature value indicates qualification; higher the better.

Improvement Aware SC

- Assume that η is component-wise increasing in x ⁴ and the cost function is decomposable.
- Define
 - ▶ $\text{ERR}_s(f) := \mathbb{E}_{(x,y) \sim \mathcal{D}} [\mathbb{1}(f(\Delta_f(x)) \neq y)]$
 - ▶ $\text{ERR}_{\text{imp}}(f) := \mathbb{E}_{(x,y) \sim \mathcal{D}} [\mathbb{1}(f(\Delta_f(x)) \neq y')]$ where $y' \sim \text{Bernoulli}(\eta(\Delta_f(x)))$
- Goal: Find optimal Strategy aware classifier i.e.,
 $f_{\text{imp}}^* \in \arg \min_{f \in \mathcal{F}} \text{ERR}_{\text{imp}}(f)$
- Also assume that the Bayes optimal classifier is also **Linear**.

⁴Feature value indicates qualification; higher the better.

Results

Theorem

$$f^*(x; w, b) = f_s^*(x; w, b + \phi) \text{ with } \phi = \max_i \frac{w_i}{\alpha_i}.$$

- f^* represents an optimal (linear) classifier with pristine, non-manipulated data; **a naive approach**

Results

Theorem

$$f^*(x; w, b) = f_s^*(x; w, b + \phi) \text{ with } \phi = \max_i \frac{w_i}{\alpha_i}.$$

- f^* represents an optimal (linear) classifier with pristine, non-manipulated data; **a naive approach**
- Optimal classifier with manipulated data with no-improvement; **a pessimistic approach**

Theorem

$$f_{imp}^*(x) = f^*(x; w, b + \phi') \text{ where } \phi' \in [0, \max_i \frac{w_i}{\alpha_i}]. \text{ Furthermore, } err_{imp}(f_s^*) \leq err_{imp}(f^*).$$

- The improvement aware classifier lies between naive and pessimistic classifiers.
- Also, the pessimistic classifier is a more reliable proxy for improvement aware classifier over a naive classifier.

Takeaways

- Traditional ML algorithms perform poorly in a strategic setting

Takeaways

- Traditional ML algorithms perform poorly in a strategic setting
- The other extreme; overfit to strategic nature

Takeaways

- Traditional ML algorithms perform poorly in a strategic setting
- The other extreme; overfit to strategic nature
- Strategic classifiers are learnable under reasonable assumptions on cost functions

Takeaways

- Traditional ML algorithms perform poorly in a strategic setting
- The other extreme; overfit to strategic nature
- Strategic classifiers are learnable under reasonable assumptions on cost functions
- **Many questions:** Heterogeneous Users, Social Burden, Information disparity, Herd Behavior....

Takeaways

- Traditional ML algorithms perform poorly in a strategic setting
- The other extreme; overfit to strategic nature
- Strategic classifiers are learnable under reasonable assumptions on cost functions
- **Many questions:** Heterogeneous Users, Social Burden, Information disparity, Herd Behavior....
- **Beyond SC:** Ranking, clustering, Online learning...

Takeaways

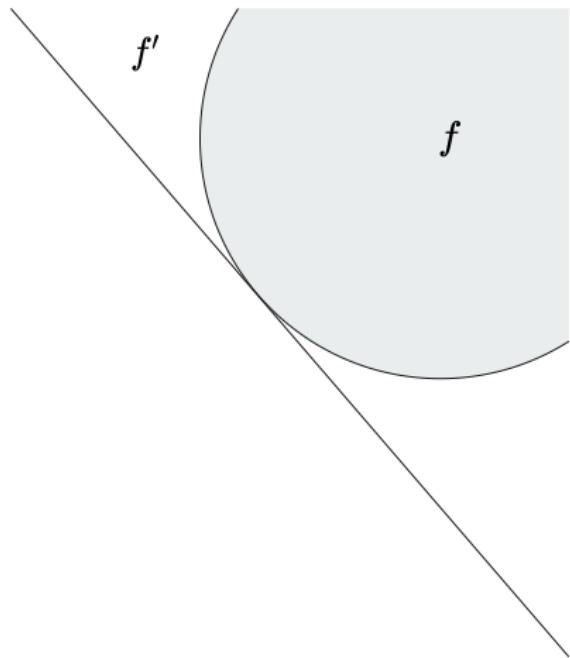
- Traditional ML algorithms perform poorly in a strategic setting
- The other extreme; overfit to strategic nature
- Strategic classifiers are learnable under reasonable assumptions on cost functions
- **Many questions:** Heterogeneous Users, Social Burden, Information disparity, Herd Behavior....
- **Beyond SC:** Ranking, clustering, Online learning...
- **System Manipulation:** strategic representation, User targeting, Persuasion ...

Takeaways

- Traditional ML algorithms perform poorly in a strategic setting
- The other extreme; overfit to strategic nature
- Strategic classifiers are learnable under reasonable assumptions on cost functions
- **Many questions:** Heterogeneous Users, Social Burden, Information disparity, Herd Behavior....
- **Beyond SC:** Ranking, clustering, Online learning...
- **System Manipulation:** strategic representation, User targeting, Persuasion ...

Thank you!

Strategic ERM



Algorithm 1: A: gaming-robust classification algorithm for separable cost functions

- 1 **Inputs:** Labeled examples $(x_1, h(x_1)), \dots, (x_m, h(x_m))$ from $x_i \sim \mathcal{D}$ i.i.d.. Also, a description of a separable cost function $c(x, y) = \max\{0, c_2(y) - c_1(x)\}$. \Leftrightarrow
- 2 For $i = 1, \dots, m$, let

$$\begin{aligned} t_i &:= c_1(x_i) \\ s_i &:= \begin{cases} \max(c_2(X) \cap [t_i, t_i + 2]) & c_2(X) \cap [t_i, t_i + 2] \neq \emptyset \\ \infty & c_2(X) \cap [t_i, t_i + 2] = \emptyset. \end{cases} \end{aligned}$$

For convenience, set $s_{m+1} = \infty$.

- 3 Compute

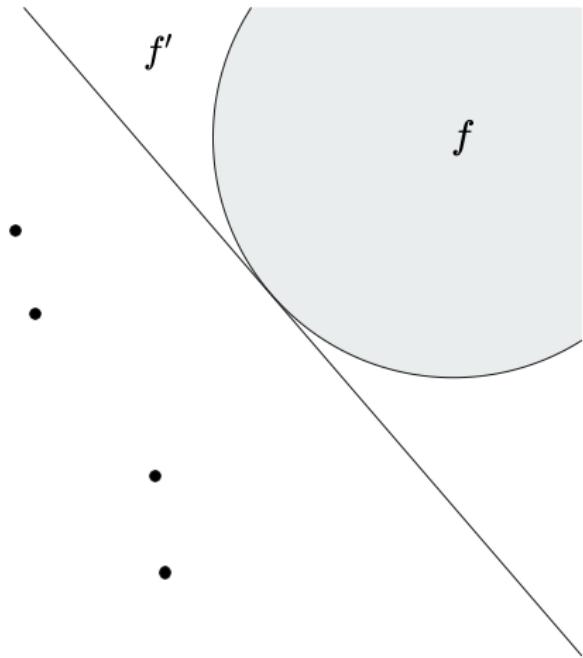
$$\widehat{\text{err}}(s_i) := \frac{1}{m} \sum_{j=1}^m \mathbf{1}\{h(x_j) \neq c_1[s_i - 2](x_j)\}.$$

- 4 Find i^* , $1 \leq i^* \leq m+1$, that minimizes $\widehat{\text{err}}(s_i)$.

- 5 **Return:** $f := c_2[s_{i^*}]$.

1

Strategic ERM



Algorithm 1: A: gaming-robust classification algorithm for separable cost functions

- 1 **Inputs:** Labeled examples $(x_1, h(x_1)), \dots, (x_m, h(x_m))$ from $x_i \sim \mathcal{D}$ i.i.d.. Also, a description of a separable cost function $c(x, y) = \max\{0, c_2(y) - c_1(x)\}$. \Leftrightarrow
- 2 For $i = 1, \dots, m$, let

$$\begin{aligned} t_i &:= c_1(x_i) \\ s_i &:= \begin{cases} \max(c_2(X) \cap [t_i, t_i + 2]) & c_2(X) \cap [t_i, t_i + 2] \neq \emptyset \\ \infty & c_2(X) \cap [t_i, t_i + 2] = \emptyset. \end{cases} \end{aligned}$$

For convenience, set $s_{m+1} = \infty$.

- 3 Compute

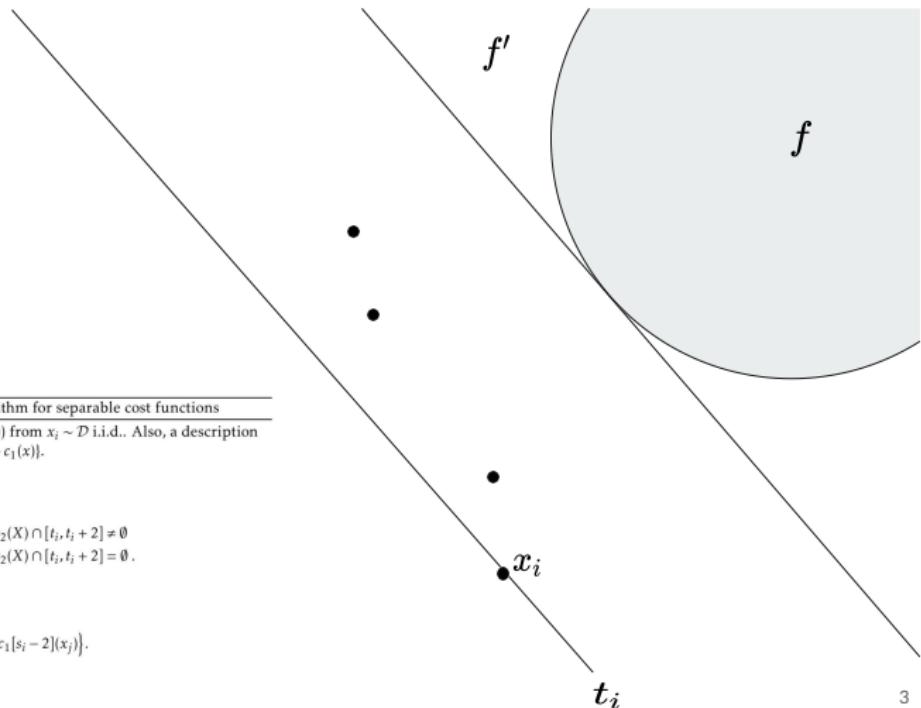
$$\widehat{\text{err}}(s_i) := \frac{1}{m} \sum_{j=1}^m \mathbf{1}\{h(x_j) \neq c_1[s_i - 2](x_j)\}.$$

- 4 Find i^* , $1 \leq i^* \leq m+1$, that minimizes $\widehat{\text{err}}(s_i)$.

- 5 **Return:** $f := c_2[s_{i^*}]$.

2

Strategic ERM



Algorithm 1: A: gaming-robust classification algorithm for separable cost functions

- 1 **Inputs:** Labeled examples $(x_1, h(x_1)), \dots, (x_m, h(x_m))$ from $x_i \sim \mathcal{D}$ i.i.d.. Also, a description of a separable cost function $c(x, y) = \max\{0, c_2(y) - c_1(x)\}$.
- 2 For $i = 1, \dots, m$, let

$$t_i := c_1(x_i) \quad \square$$
$$s_i := \begin{cases} \max(c_2(X) \cap [t_i, t_i + 2]) & c_2(X) \cap [t_i, t_i + 2] \neq \emptyset \\ \infty & c_2(X) \cap [t_i, t_i + 2] = \emptyset. \end{cases}$$

For convenience, set $s_{m+1} = \infty$.

- 3 Compute

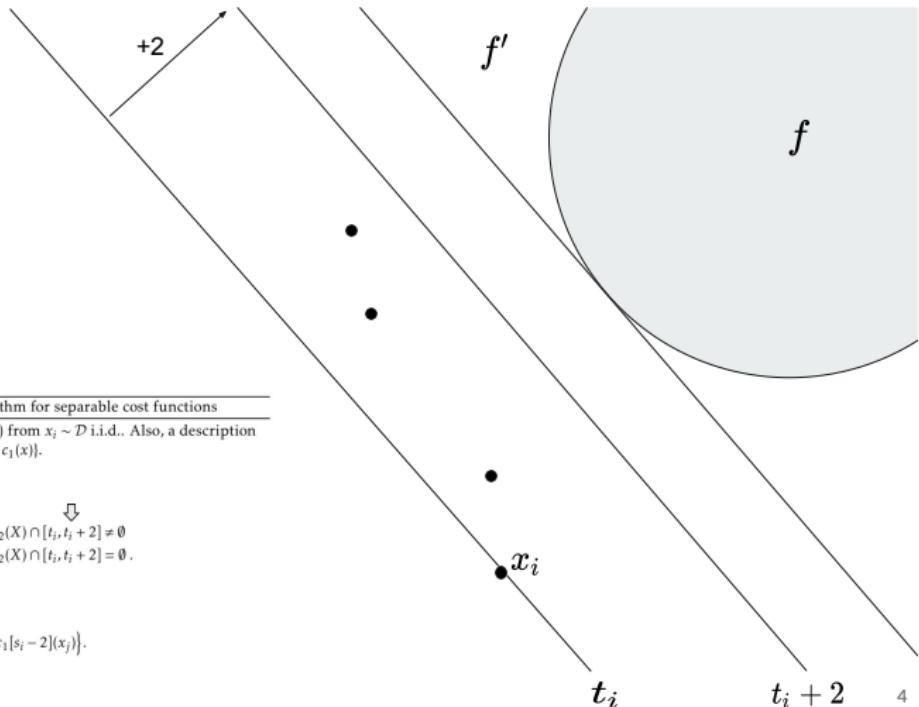
$$\widehat{\text{err}}(s_i) := \frac{1}{m} \sum_{j=1}^m \mathbf{1}\{h(x_j) \neq c_1[s_i - 2](x_j)\}.$$

- 4 Find i^* , $1 \leq i^* \leq m+1$, that minimizes $\widehat{\text{err}}(s_i)$.

- 5 **Return:** $f := c_2[s_{i^*}]$.

3

Strategic ERM



Algorithm 1: A: gaming-robust classification algorithm for separable cost functions

- 1 **Inputs:** Labeled examples $(x_1, h(x_1)), \dots, (x_m, h(x_m))$ from $x_i \sim \mathcal{D}$ i.i.d.. Also, a description of a separable cost function $c(x, y) = \max\{0, c_2(y) - c_1(x)\}$.
- 2 For $i = 1, \dots, m$, let

$$t_i := c_1(x_i)$$
$$s_i := \begin{cases} \max(c_2(X) \cap [t_i, t_i + 2]) & c_2(X) \cap [t_i, t_i + 2] \neq \emptyset \\ \infty & c_2(X) \cap [t_i, t_i + 2] = \emptyset. \end{cases}$$

For convenience, set $s_{m+1} = \infty$.

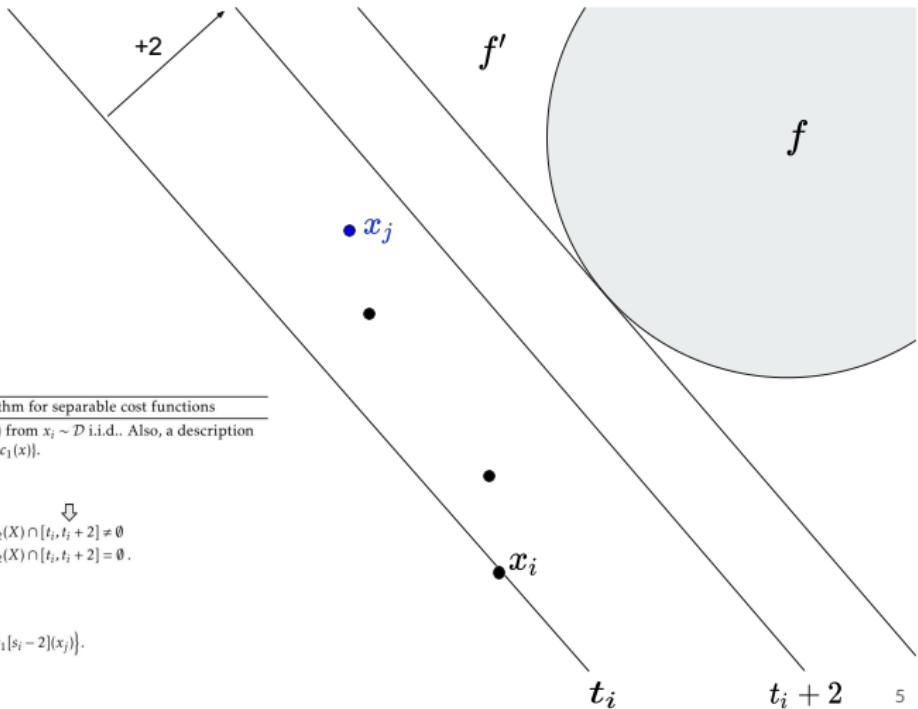
- 3 Compute

$$\widehat{\text{err}}(s_i) := \frac{1}{m} \sum_{j=1}^m \mathbf{1}\{h(x_j) \neq c_1[s_i - 2](x_j)\}.$$

- 4 Find i^* , $1 \leq i^* \leq m+1$, that minimizes $\widehat{\text{err}}(s_i)$.

- 5 **Return:** $f := c_2[s_{i^*}]$.

Strategic ERM



Algorithm 1: A: gaming-robust classification algorithm for separable cost functions

- 1 **Inputs:** Labeled examples $(x_1, h(x_1)), \dots, (x_m, h(x_m))$ from $x_i \sim \mathcal{D}$ i.i.d.. Also, a description of a separable cost function $c(x, y) = \max\{0, c_2(y) - c_1(x)\}$.
- 2 For $i = 1, \dots, m$, let

$$t_i := c_1(x_i)$$
$$s_i := \begin{cases} \max(c_2(X) \cap [t_i, t_i + 2]) & c_2(X) \cap [t_i, t_i + 2] \neq \emptyset \\ \infty & c_2(X) \cap [t_i, t_i + 2] = \emptyset. \end{cases}$$

For convenience, set $s_{m+1} = \infty$.

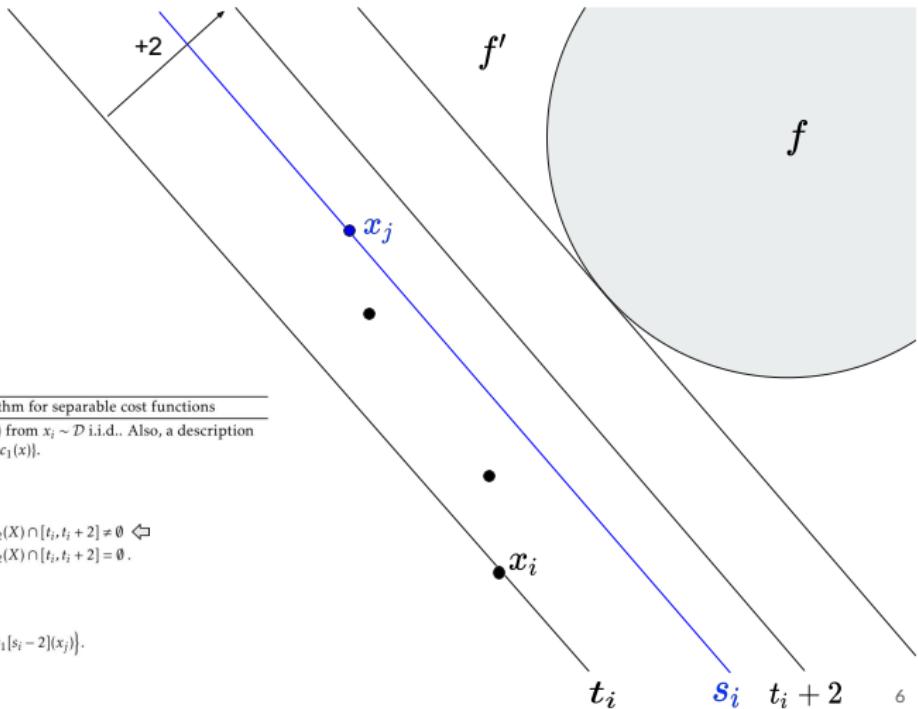
- 3 Compute

$$\widehat{\text{err}}(s_i) := \frac{1}{m} \sum_{j=1}^m \mathbf{1}\{h(x_j) \neq c_1[s_i - 2](x_j)\}.$$

- 4 Find i^* , $1 \leq i^* \leq m+1$, that minimizes $\widehat{\text{err}}(s_i)$.

- 5 **Return:** $f := c_2[s_{i^*}]$.

Strategic ERM



Algorithm 1: A: gaming-robust classification algorithm for separable cost functions

- 1 **Inputs:** Labeled examples $(x_1, h(x_1)), \dots, (x_m, h(x_m))$ from $x_i \sim \mathcal{D}$ i.i.d.. Also, a description of a separable cost function $c(x, y) = \max\{0, c_2(y) - c_1(x)\}$.
- 2 For $i = 1, \dots, m$, let

$$\begin{aligned} t_i &:= c_1(x_i) \\ s_i &:= \begin{cases} \max(c_2(X) \cap [t_i, t_i + 2]) & c_2(X) \cap [t_i, t_i + 2] \neq \emptyset \Leftrightarrow \\ \infty & c_2(X) \cap [t_i, t_i + 2] = \emptyset. \end{cases} \end{aligned}$$

For convenience, set $s_{m+1} = \infty$.

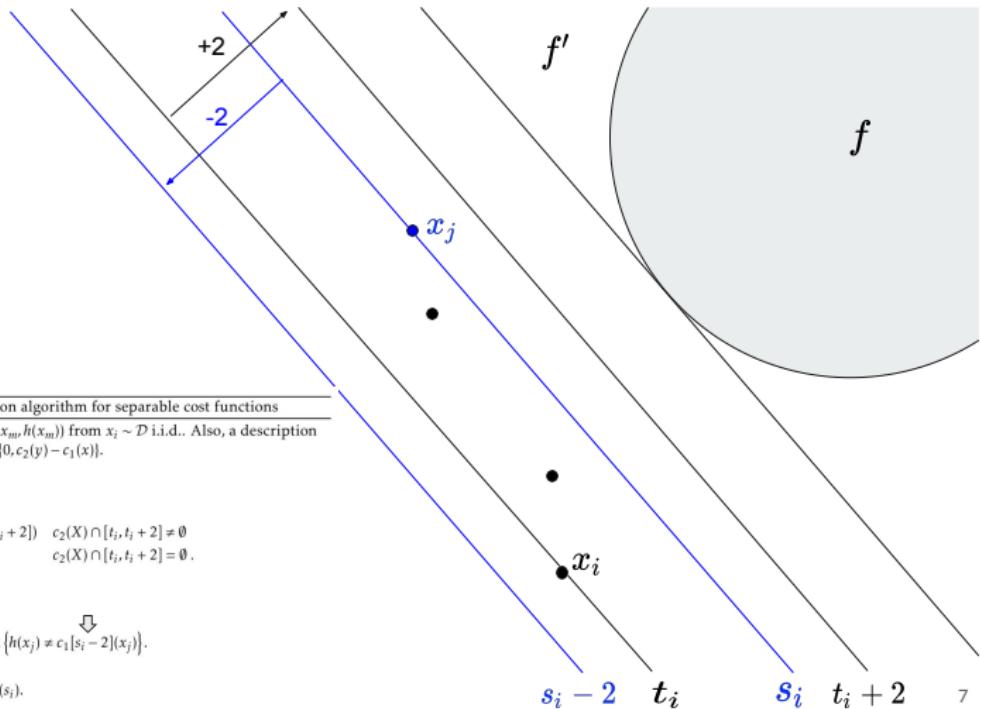
- 3 Compute

$$\widehat{\text{err}}(s_i) := \frac{1}{m} \sum_{j=1}^m \mathbf{1}\{h(x_j) \neq c_1[s_i - 2](x_j)\}.$$

- 4 Find i^* , $1 \leq i^* \leq m+1$, that minimizes $\widehat{\text{err}}(s_i)$.

- 5 **Return:** $f := c_2[s_{i^*}]$.

Strategic ERM



Algorithm 1: A: gaming-robust classification algorithm for separable cost functions

- 1 **Inputs:** Labeled examples $(x_1, h(x_1)), \dots, (x_m, h(x_m))$ from $x_i \sim \mathcal{D}$ i.i.d.. Also, a description of a separable cost function $c(x, y) = \max\{0, c_2(y) - c_1(x)\}$.
- 2 For $i = 1, \dots, m$, let

$$\begin{aligned} t_i &:= c_1(x_i) \\ s_i &:= \begin{cases} \max(c_2(X) \cap [t_i, t_i + 2]) & c_2(X) \cap [t_i, t_i + 2] \neq \emptyset \\ \infty & c_2(X) \cap [t_i, t_i + 2] = \emptyset. \end{cases} \end{aligned}$$

For convenience, set $s_{m+1} = \infty$.

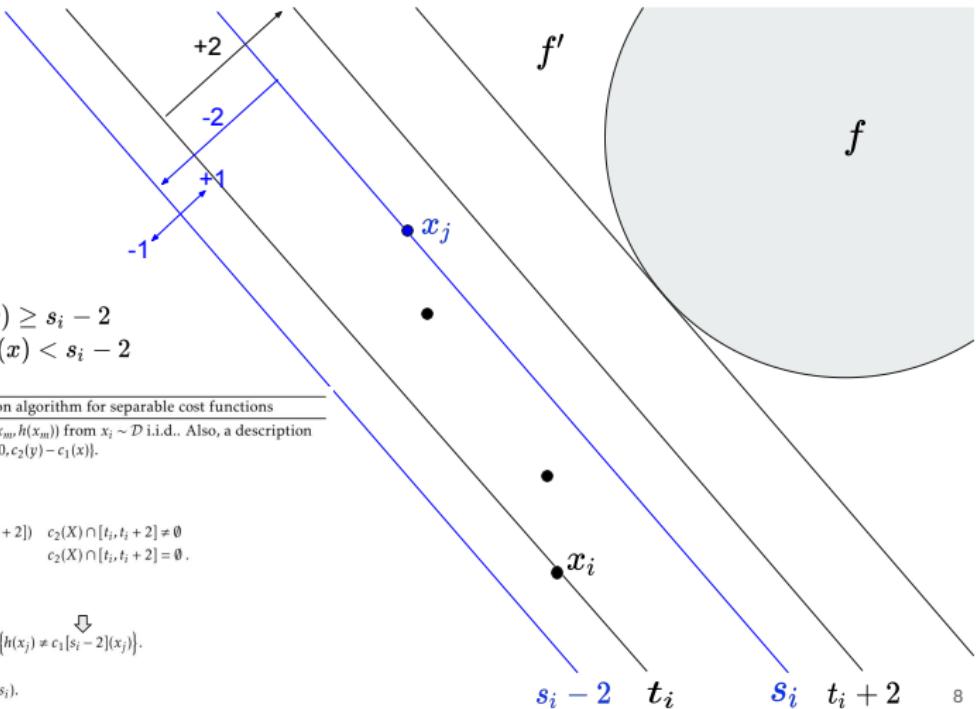
- 3 Compute

$$\widehat{\text{err}}(s_i) := \frac{1}{m} \sum_{j=1}^m \mathbf{1}\{h(x_j) \neq c_1[s_i - 2](x_j)\}.$$

- 4 Find i^* , $1 \leq i^* \leq m+1$, that minimizes $\widehat{\text{err}}(s_i)$.

- 5 **Return:** $f := c_2[s_{i^*}]$.

Strategic ERM



$$c_1[s_i - 2](x) = \begin{cases} 1, & \text{if } c_1(x) \geq s_i - 2 \\ -1, & \text{if } c_1(x) < s_i - 2 \end{cases}$$

Algorithm 1: A: gaming-robust classification algorithm for separable cost functions

- 1 **Inputs:** Labeled examples $(x_1, h(x_1)), \dots, (x_m, h(x_m))$ from $x_i \sim \mathcal{D}$ i.i.d.. Also, a description of a separable cost function $c(x, y) = \max\{0, c_2(y) - c_1(x)\}$.
- 2 For $i = 1, \dots, m$, let

$$\begin{aligned} t_i &:= c_1(x_i) \\ s_i &:= \begin{cases} \max(c_2(X) \cap [t_i, t_i + 2]) & c_2(X) \cap [t_i, t_i + 2] \neq \emptyset \\ \infty & c_2(X) \cap [t_i, t_i + 2] = \emptyset. \end{cases} \end{aligned}$$

For convenience, set $s_{m+1} = \infty$.

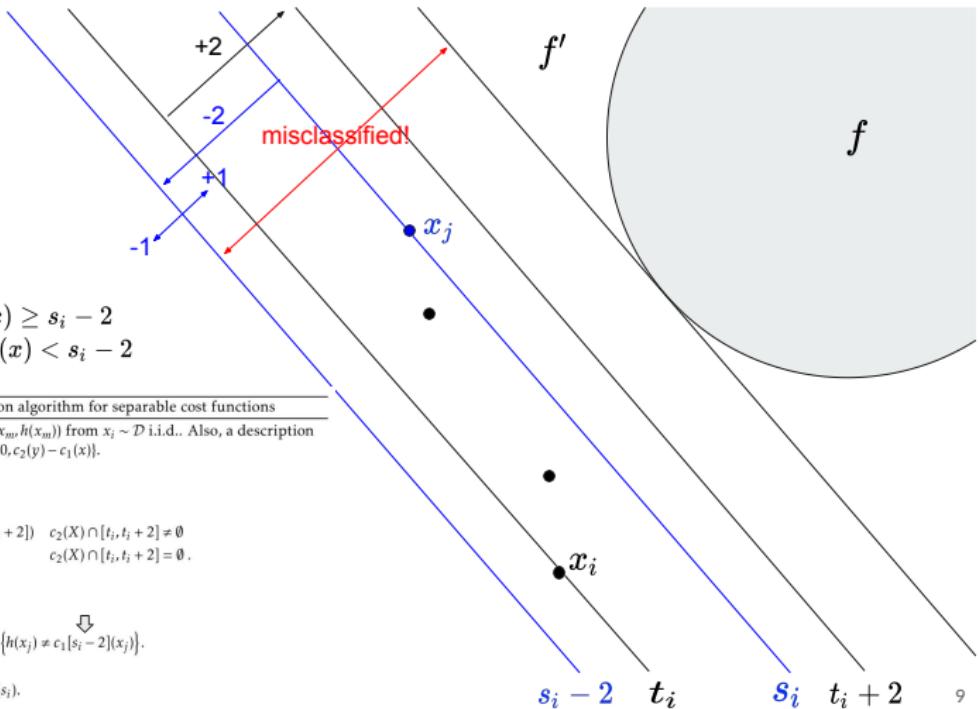
- 3 Compute

$$\widehat{\text{err}}(s_i) := \frac{1}{m} \sum_{j=1}^m \mathbf{1}\{h(x_j) \neq c_1[s_i - 2](x_j)\}.$$

- 4 Find i^* , $1 \leq i^* \leq m+1$, that minimizes $\widehat{\text{err}}(s_i)$.

- 5 **Return:** $f := c_2[s_{i^*}]$.

Strategic ERM



Algorithm 1: A: gaming-robust classification algorithm for separable cost functions

- 1 **Inputs:** Labeled examples $(x_1, h(x_1)), \dots, (x_m, h(x_m))$ from $x_i \sim \mathcal{D}$ i.i.d.. Also, a description of a separable cost function $c(x, y) = \max\{0, c_2(y) - c_1(x)\}$.
- 2 For $i = 1, \dots, m$, let

$$\begin{aligned} t_i &:= c_1(x_i) \\ s_i &:= \begin{cases} \max(c_2(X) \cap [t_i, t_i + 2]) & c_2(X) \cap [t_i, t_i + 2] \neq \emptyset \\ \infty & c_2(X) \cap [t_i, t_i + 2] = \emptyset. \end{cases} \end{aligned}$$

For convenience, set $s_{m+1} = \infty$.

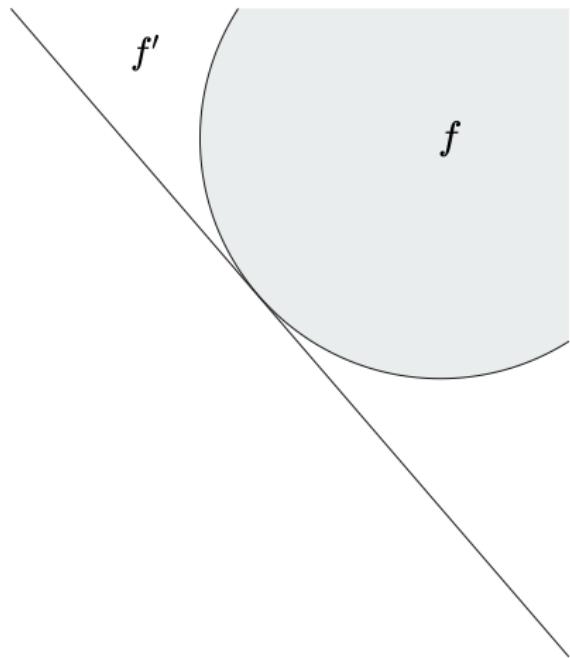
- 3 Compute

$$\widehat{\text{err}}(s_i) := \frac{1}{m} \sum_{j=1}^m \mathbf{1}\{h(x_j) \neq c_1[s_i - 2](x_j)\}.$$

- 4 Find i^* , $1 \leq i^* \leq m+1$, that minimizes $\widehat{\text{err}}(s_i)$.

- 5 **Return:** $f := c_2[s_{i^*}]$.

Strategic ERM



Algorithm 1: A: gaming-robust classification algorithm for separable cost functions

- 1 Inputs:** Labeled examples $(x_1, h(x_1)), \dots, (x_m, h(x_m))$ from $x_i \sim \mathcal{D}$ i.i.d.. Also, a description of a separable cost function $c(x, y) = \max\{0, c_2(y) - c_1(x)\}$.
- 2 For $i = 1, \dots, m$, let

$$t_i := c_1(x_i)$$
$$s_i := \begin{cases} \max(c_2(X) \cap [t_i, t_i + 2]) & c_2(X) \cap [t_i, t_i + 2] \neq \emptyset \\ \infty & c_2(X) \cap [t_i, t_i + 2] = \emptyset. \end{cases}$$

For convenience, set $s_{m+1} = \infty$.

- 3 Compute

$$\widehat{\text{err}}(s_i) := \frac{1}{m} \sum_{j=1}^m \mathbf{1}\{h(x_j) \neq c_1[s_i - 2](x_j)\}.$$

- 4 Find i^* , $1 \leq i^* \leq m+1$, that minimizes $\widehat{\text{err}}(s_i)$.

- 5 **Return:** $f := c_2[s_{i^*}]$.

$$c_2[s_i^*](x) = \begin{cases} 1 & \text{if } c_2(x) \geq s_i^* \\ -1 & \text{if } c_2(x) < s_i^* \end{cases}$$

Algorithm 1: A: gaming-robust classification algorithm for separable cost functions

- 1 **Inputs:** Labeled examples $(x_1, h(x_1)), \dots, (x_m, h(x_m))$ from $x_i \sim \mathcal{D}$ i.i.d.. Also, a description of a separable cost function $c(x, y) = \max[0, c_2(y) - c_1(x)]$.
- 2 For $i = 1, \dots, m$, let

$$\begin{aligned} t_i &:= c_1(x_i) \\ s_i &:= \begin{cases} \max(c_2(X) \cap [t_i, t_i + 2]) & c_2(X) \cap [t_i, t_i + 2] \neq \emptyset \\ \infty & c_2(X) \cap [t_i, t_i + 2] = \emptyset. \end{cases} \end{aligned}$$

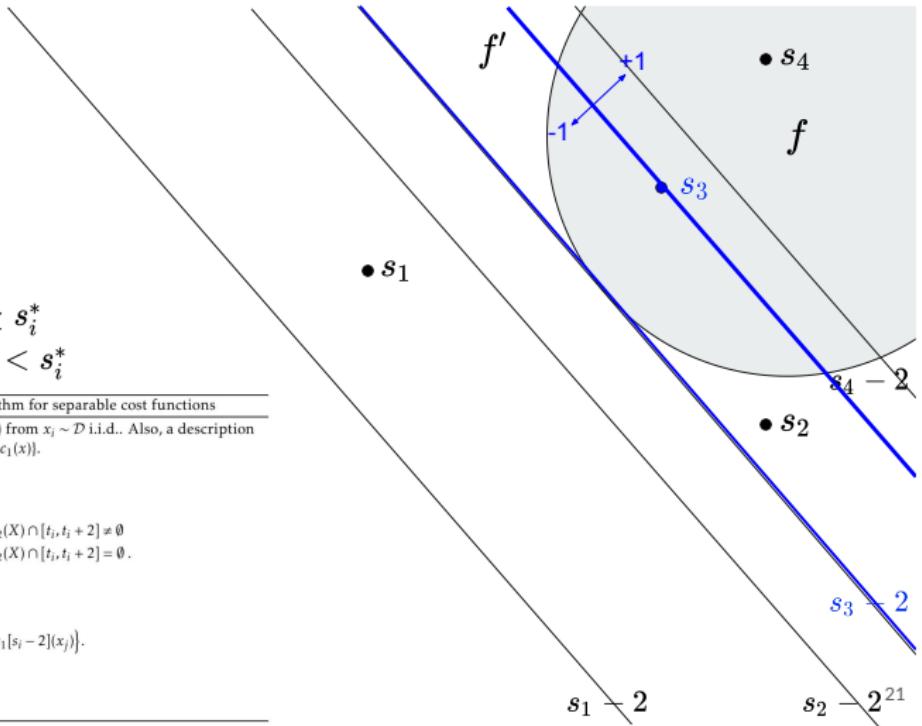
For convenience, set $s_{m+1} = \infty$.

- 3 Compute

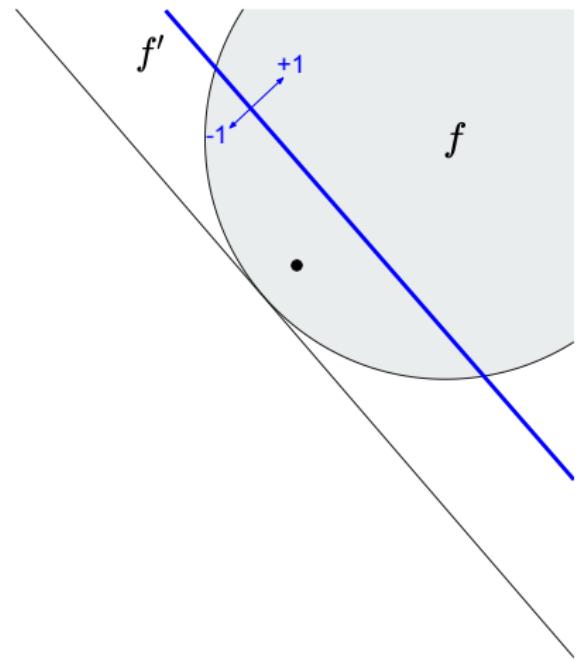
$$\widehat{\text{err}}(s_i) := \frac{1}{m} \sum_{j=1}^m \mathbf{1}\{h(x_j) \neq c_1[s_i - 2](x_j)\}.$$

- 4 Find i^* , $1 \leq i^* \leq m+1$, that minimizes $\widehat{\text{err}}(s_i)$.

- 5 **Return:** $f := c_2[s_{i^*}]$. \Leftrightarrow

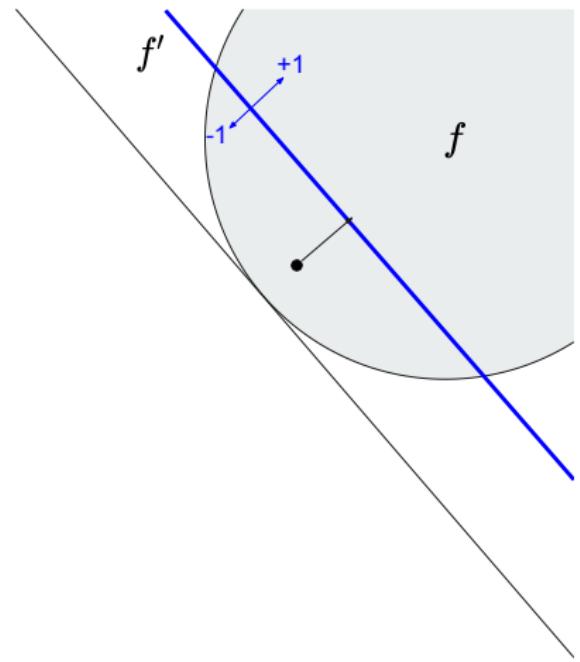


New input 1



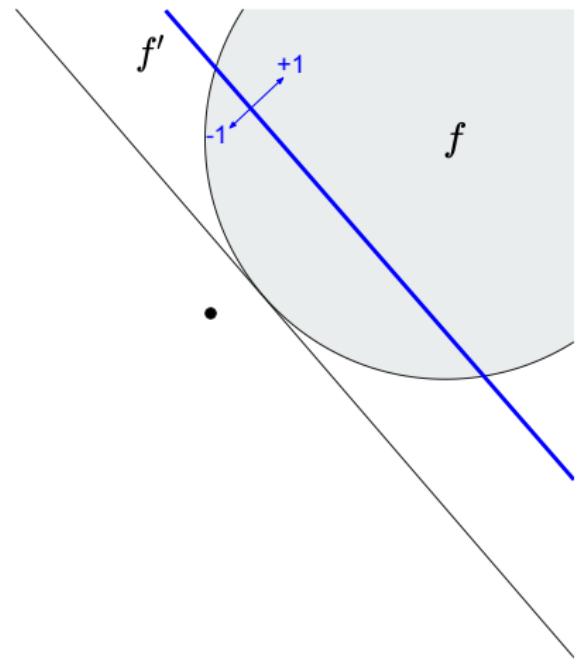
22

New input 1



23

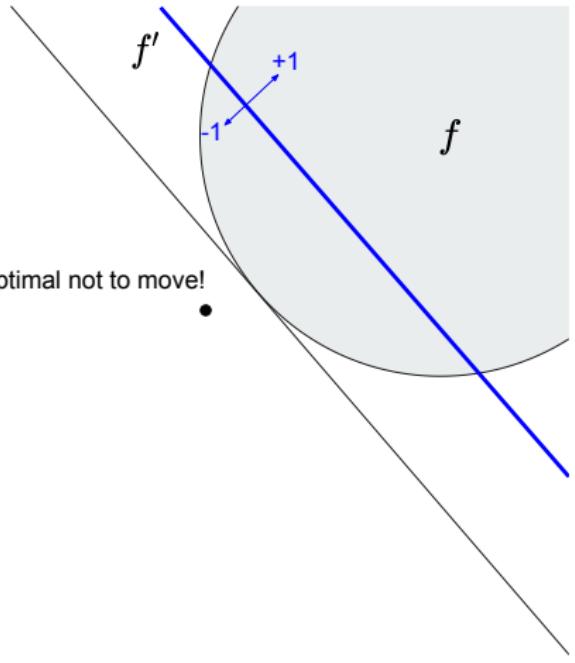
New input 2



24

New input 2

Optimal not to move!



25